A Survey of Credit Card Fraud Detection Techniques: Data and Technique Oriented Perspective
نویسندگان
چکیده
Credit card plays a very important rule in today's economy. It becomes an unavoidable part of household, business and global activities. Although using credit cards provides enormous benefits when used carefully and responsibly,significant credit and financial damagesmay be causedby fraudulent activities. Many techniques have been proposed to confront thegrowthin credit card fraud. However, all of these techniques have the same goal of avoiding the credit card fraud; each one has its own drawbacks, advantages and characteristics. In this paper, after investigating difficultiesof credit card fraud detection, we seek to review the state of the art in credit card fraud detection techniques, datasets and evaluation criteria.The advantages and disadvantages of fraud detection methods are enumerated and compared.Furthermore, a classification of mentioned techniques into two main fraud detection approaches, namely, misuses (supervised) and anomaly detection (unsupervised) is presented. Again, a classification of techniques is proposed based on capability to process the numerical and categorical datasets. Different datasets used in literatureare then described and grouped into real and synthesized data and the effective and common attributesare extracted for further usage.Moreover, evaluation employed criterions in literature are collected and discussed.Consequently, open issues for credit card fraud detection are explained as guidelinesfor
منابع مشابه
Detecting Suspicious Card Transactions in unlabeled data of bank Using Outlier Detection Techniqes
With the advancement of technology, the use of ATM and credit cards are increased. Cyber fraud and theft are the kinds of threat which result in using these Technologies. It is therefore inevitable to use fraud detection algorithms to prevent fraudulent use of bank cards. Credit card fraud can be thought of as a form of identity theft that consists of an unauthorized access to another person's ...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملCredit Card Fraud Detection using Data mining and Statistical Methods
Due to today’s advancement in technology and businesses, fraud detection has become a critical component of financial transactions. Considering vast amounts of data in large datasets, it becomes more difficult to detect fraud transactions manually. In this research, we propose a combined method using both data mining and statistical tasks, utilizing feature selection, resampling and cost-...
متن کاملCombination of Ensemble Data Mining Methods for Detecting Credit Card Fraud Transactions
As we know, credit cards speed up and make life easier for all citizens and bank customers. They can use it anytime and anyplace according to their personal needs, instantly and quickly and without hassle, without worrying about carrying a lot of cash and more security than having liquidity. Together, these factors make credit cards one of the most popular forms of online banking. This has led ...
متن کاملA Revived Survey of Various Credit Card Fraud Detection Techniques
As there is a vast advancement in the E-commerce technology, the use of credit cards has grown up. The credit card has become the crucial mode of payment so with the rise in the credit card transactions, the credit card frauds have also become frequent nowadays. [1] Thus, an improved fraud detection system has become essential to maintain the reliability of the payment system. The criterion is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1611.06439 شماره
صفحات -
تاریخ انتشار 2016